Skip navigation links

RankSys 0.4.3 API

Packages 
Package Description
es.uam.eps.ir.ranksys.core
Core interfaces and classes in RankSys.
es.uam.eps.ir.ranksys.core.feature
Classes for accessing item-feature data.
es.uam.eps.ir.ranksys.core.index
Indexes for users, items and features.
es.uam.eps.ir.ranksys.core.model
Classes for user models.
es.uam.eps.ir.ranksys.core.preference
Classes for accessing user-item preferences.
es.uam.eps.ir.ranksys.core.util
Generic utilities.
es.uam.eps.ir.ranksys.core.util.topn
Bounded min-heaps to keep the top-n values.
es.uam.eps.ir.ranksys.diversity.binom
Binomial genre-diversity model.
es.uam.eps.ir.ranksys.diversity.binom.metrics
Binomial metrics.
es.uam.eps.ir.ranksys.diversity.binom.reranking
Binomial re-rankers.
es.uam.eps.ir.ranksys.diversity.distance.metrics
Distance-based metrics.
es.uam.eps.ir.ranksys.diversity.distance.reranking
Distance-based rerankers.
es.uam.eps.ir.ranksys.diversity.intentaware
Intent-aware model.
es.uam.eps.ir.ranksys.diversity.intentaware.metrics
Intent-aware metrics.
es.uam.eps.ir.ranksys.diversity.intentaware.reranking
Intent-aware re-rankers.
es.uam.eps.ir.ranksys.diversity.other.metrics
Other diversity metrics.
es.uam.eps.ir.ranksys.diversity.sales.metrics
Sales diversity metrics.
es.uam.eps.ir.ranksys.examples
Example main programs for recommenders, metrics and rerankers.
es.uam.eps.ir.ranksys.fast
Core classes of RankSys-fast.
es.uam.eps.ir.ranksys.fast.feature
Fast versions of FeatureData.
es.uam.eps.ir.ranksys.fast.index
Fast versions of user/item/feature indexes.
es.uam.eps.ir.ranksys.fast.preference
Fast versions of PreferenceData.
es.uam.eps.ir.ranksys.fast.utils
Utilities for RankSys-module.
es.uam.eps.ir.ranksys.fast.utils.topn
Fast versions of TopN.
es.uam.eps.ir.ranksys.metrics
Interfaces and abstract classes for metrics.
es.uam.eps.ir.ranksys.metrics.basic
Implementations of basic, common metrics.
es.uam.eps.ir.ranksys.metrics.rank
Ranking discount models.
es.uam.eps.ir.ranksys.metrics.rel
Relevance models.
es.uam.eps.ir.ranksys.mf
Matrix factorization base classes.
es.uam.eps.ir.ranksys.mf.als
Alternating least-squares factorization.
es.uam.eps.ir.ranksys.mf.plsa
Probabilistic latent semantic analysis.
es.uam.eps.ir.ranksys.mf.rec
Matrix factorization recommenders.
es.uam.eps.ir.ranksys.nn.item
Item-based nearest neighbors recommenders.
es.uam.eps.ir.ranksys.nn.item.neighborhood
Item neighborhoods.
es.uam.eps.ir.ranksys.nn.item.sim
Item similarities.
es.uam.eps.ir.ranksys.nn.neighborhood
Neighborhoods.
es.uam.eps.ir.ranksys.nn.sim
Similarities.
es.uam.eps.ir.ranksys.nn.user
User-based nearest neighbors recommenders.
es.uam.eps.ir.ranksys.nn.user.neighborhood
User neighborhoods.
es.uam.eps.ir.ranksys.nn.user.sim
User similarities.
es.uam.eps.ir.ranksys.novdiv.distance
Item distance models.
es.uam.eps.ir.ranksys.novdiv.itemnovelty
Item novelty models.
es.uam.eps.ir.ranksys.novdiv.itemnovelty.metrics
Item novelty metrics.
es.uam.eps.ir.ranksys.novdiv.itemnovelty.reranking
Item novelty re-rankers.
es.uam.eps.ir.ranksys.novdiv.reranking
Re-rankers.
es.uam.eps.ir.ranksys.novelty.inverted.br
Bayesian probabilistic reformulations.
es.uam.eps.ir.ranksys.novelty.inverted.neighborhood
Inverted neighborhoods.
es.uam.eps.ir.ranksys.novelty.longtail
Long Tail novelty.
es.uam.eps.ir.ranksys.novelty.longtail.metrics
Long Tail novelty metrics.
es.uam.eps.ir.ranksys.novelty.longtail.reranking
Long Tail novelty re-rankers.
es.uam.eps.ir.ranksys.novelty.sales
Sales novelty.
es.uam.eps.ir.ranksys.novelty.sales.metrics
Sales novelty metrics.
es.uam.eps.ir.ranksys.novelty.sales.reranking
Sales novelty re-rankers.
es.uam.eps.ir.ranksys.novelty.temporal
Temporal novelty.
es.uam.eps.ir.ranksys.novelty.temporal.metrics
Temporal novelty metrics.
es.uam.eps.ir.ranksys.novelty.temporal.reranking
Temporal novelty re-rankers.
es.uam.eps.ir.ranksys.novelty.unexp
Unexpectedness.
es.uam.eps.ir.ranksys.novelty.unexp.metrics
Unexpectedness metrics.
es.uam.eps.ir.ranksys.novelty.unexp.reranking
Unexpectedness re-rankers.
es.uam.eps.ir.ranksys.rec
Base classes and interfaces for recommendation algorithms.
es.uam.eps.ir.ranksys.rec.fast
Fast version of base classes and interfaces for recommendation algorithms.
es.uam.eps.ir.ranksys.rec.fast.basic
Basic recommendation algorithms.
es.uam.eps.ir.ranksys.rec.runner
Recommender runners.
es.uam.eps.ir.ranksys.rec.runner.fast
Fast recommender runners.
org.ranksys.compression.codecs
Core interfaces and classes for codecs.
org.ranksys.compression.codecs.dsi
Codecs from dsiutils.
org.ranksys.compression.codecs.lemire
Codecs from Lemire's JavaFastPFOR.
org.ranksys.compression.preferences
Compressed PreferenceData for binary and rating data.
org.ranksys.compression.util
Utilities for compression techniques.
org.ranksys.core.preference
Classes for accessing user-item preferences.
org.ranksys.core.util
Generic utilities.
org.ranksys.core.util.iterators
Primitive iterators.
org.ranksys.core.util.sampling
Sampling utilities.
org.ranksys.core.util.tuples
Primitive tuples.
org.ranksys.diversity.prop.metrics
Proportionality metrics.
org.ranksys.diversity.prop.reranking
Proportionality re-ranking methods.
org.ranksys.examples
Example main programs for compression.
org.ranksys.fast.preference
Fast versions of PreferenceData.
org.ranksys.fm
Wrappers for factorisation machines.
org.ranksys.fm.data
Implementation of FMData for recommendation tasks.
org.ranksys.fm.rec
FM-based recommenders.
org.ranksys.formats.factorization
Write and read format for factorised models.
org.ranksys.formats.feature
Write and read format for FeatureData.
org.ranksys.formats.index
Write and read format for (User|Item|Feature)Index.
org.ranksys.formats.parsing
String parsers.
org.ranksys.formats.preference
Write and read format for preferences.
org.ranksys.formats.rec
Write and read format for recommendations in files.
org.ranksys.lda
LDA topic modelling and recommender.
org.ranksys.metrics.basic
Implementations of basic, common metrics.
org.ranksys.novdiv.reranking
Re-rankers.
org.ranksys.rec.fast
Fast version of base classes and interfaces for recommendation algorithms.
Skip navigation links

Copyright © 2016. All rights reserved.