Package | Description |
---|---|
es.uam.eps.ir.ranksys.fast.preference |
Fast versions of PreferenceData.
|
es.uam.eps.ir.ranksys.mf |
Matrix factorization base classes.
|
es.uam.eps.ir.ranksys.mf.als |
Alternating least-squares factorization.
|
es.uam.eps.ir.ranksys.mf.plsa |
Probabilistic latent semantic analysis.
|
es.uam.eps.ir.ranksys.nn.item |
Item-based nearest neighbors recommenders.
|
es.uam.eps.ir.ranksys.nn.item.sim |
Item similarities.
|
es.uam.eps.ir.ranksys.nn.sim |
Similarities.
|
es.uam.eps.ir.ranksys.nn.user |
User-based nearest neighbors recommenders.
|
es.uam.eps.ir.ranksys.nn.user.sim |
User similarities.
|
es.uam.eps.ir.ranksys.rec.fast.basic |
Basic recommendation algorithms.
|
es.uam.eps.ir.ranksys.rec.runner.fast |
Fast recommender runners.
|
org.ranksys.compression.preferences |
Compressed PreferenceData for binary and rating data.
|
org.ranksys.fast.preference |
Fast versions of PreferenceData.
|
org.ranksys.fm.data |
Implementation of FMData for recommendation tasks.
|
org.ranksys.formats.preference |
Write and read format for preferences.
|
org.ranksys.lda |
LDA topic modelling and recommender.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFastPreferenceData<U,I>
Abstract FastFeatureData, implementing the interfaces of FastUserIndex and FastItemIndex by delegating to implementations of these.
|
class |
SimpleFastPreferenceData<U,I>
Simple implementation of FastPreferenceData backed by nested lists.
|
class |
TransposedPreferenceData<I,U>
Transposed preferences, where users and items change roles.
|
Constructor and Description |
---|
TransposedPreferenceData(FastPreferenceData<U,I> recommenderData)
Constructor with default converters between IdxPref and IdPref.
|
TransposedPreferenceData(FastPreferenceData<U,I> recommenderData,
org.jooq.lambda.function.Function2<U,IdPref<I>,IdPref<U>> idPrefFun,
org.jooq.lambda.function.Function2<Integer,IdxPref,IdxPref> idxPrefFun)
Constructor with custom converters between IdxPref and IdPref.
|
Modifier and Type | Method and Description |
---|---|
abstract double |
Factorizer.error(Factorization<U,I> factorization,
FastPreferenceData<U,I> data)
Global loss of the factorization.
|
abstract void |
Factorizer.factorize(Factorization<U,I> factorization,
FastPreferenceData<U,I> data)
Calculates the factorization by using a previously generate matrix
factorization.
|
abstract Factorization<U,I> |
Factorizer.factorize(int K,
FastPreferenceData<U,I> data)
Creates and calculates a factorization.
|
Modifier and Type | Method and Description |
---|---|
double |
PZTFactorizer.error(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data) |
protected abstract double |
ALSFactorizer.error(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data)
Squared loss of two matrices.
|
double |
HKVFactorizer.error(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data) |
double |
ALSFactorizer.error(Factorization<U,I> factorization,
FastPreferenceData<U,I> data) |
void |
ALSFactorizer.factorize(Factorization<U,I> factorization,
FastPreferenceData<U,I> data) |
Factorization<U,I> |
ALSFactorizer.factorize(int K,
FastPreferenceData<U,I> data) |
void |
PZTFactorizer.set_minP(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data) |
protected abstract void |
ALSFactorizer.set_minP(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data)
User matrix least-squares step.
|
void |
HKVFactorizer.set_minP(cern.colt.matrix.impl.DenseDoubleMatrix2D p,
cern.colt.matrix.impl.DenseDoubleMatrix2D q,
FastPreferenceData<U,I> data) |
void |
PZTFactorizer.set_minQ(cern.colt.matrix.impl.DenseDoubleMatrix2D q,
cern.colt.matrix.impl.DenseDoubleMatrix2D p,
FastPreferenceData<U,I> data) |
protected abstract void |
ALSFactorizer.set_minQ(cern.colt.matrix.impl.DenseDoubleMatrix2D q,
cern.colt.matrix.impl.DenseDoubleMatrix2D p,
FastPreferenceData<U,I> data)
Item matrix least-squares step.
|
void |
HKVFactorizer.set_minQ(cern.colt.matrix.impl.DenseDoubleMatrix2D q,
cern.colt.matrix.impl.DenseDoubleMatrix2D p,
FastPreferenceData<U,I> data) |
Modifier and Type | Method and Description |
---|---|
double |
PLSAFactorizer.error(Factorization<U,I> factorization,
FastPreferenceData<U,I> data) |
void |
PLSAFactorizer.factorize(Factorization<U,I> factorization,
FastPreferenceData<U,I> data) |
Factorization<U,I> |
PLSAFactorizer.factorize(int K,
FastPreferenceData<U,I> data) |
Modifier and Type | Field and Description |
---|---|
protected FastPreferenceData<U,I> |
ItemNeighborhoodRecommender.data
Preference data.
|
Constructor and Description |
---|
ItemNeighborhoodRecommender(FastPreferenceData<U,I> data,
ItemNeighborhood<I> neighborhood,
int q)
Constructor.
|
Constructor and Description |
---|
SetCosineItemSimilarity(FastPreferenceData<?,I> data,
double alpha,
boolean dense)
Constructor.
|
SetJaccardItemSimilarity(FastPreferenceData<?,I> data,
boolean dense)
Constructor.
|
VectorCosineItemSimilarity(FastPreferenceData<?,I> data,
double alpha,
boolean dense)
Constructor.
|
VectorJaccardItemSimilarity(FastPreferenceData<?,I> data,
boolean dense)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected FastPreferenceData<?,?> |
VectorSimilarity.data
User-item preferences.
|
protected FastPreferenceData<?,?> |
SetSimilarity.data
User-item preferences.
|
Constructor and Description |
---|
SetCosineSimilarity(FastPreferenceData<?,?> data,
double alpha,
boolean dense)
Constructor.
|
SetJaccardSimilarity(FastPreferenceData<?,?> data,
boolean dense)
Constructor.
|
SetSimilarity(FastPreferenceData<?,?> data,
boolean dense)
Constructor.
|
VectorCosineSimilarity(FastPreferenceData<?,?> data,
double alpha,
boolean dense)
Constructor.
|
VectorJaccardSimilarity(FastPreferenceData<?,?> data,
boolean dense)
Constructor.
|
VectorSimilarity(FastPreferenceData<?,?> data,
boolean dense)
Constructor.
|
Modifier and Type | Field and Description |
---|---|
protected FastPreferenceData<U,I> |
UserNeighborhoodRecommender.data
Preference data.
|
Constructor and Description |
---|
UserNeighborhoodRecommender(FastPreferenceData<U,I> data,
UserNeighborhood<U> neighborhood,
int q)
Constructor.
|
Constructor and Description |
---|
SetCosineUserSimilarity(FastPreferenceData<U,?> recommenderData,
double alpha,
boolean dense)
Constructor.
|
SetJaccardUserSimilarity(FastPreferenceData<U,?> data,
boolean dense)
Constructor.
|
VectorCosineUserSimilarity(FastPreferenceData<U,?> data,
double alpha,
boolean dense)
Constructor.
|
VectorJaccardUserSimilarity(FastPreferenceData<U,?> data,
boolean dense)
Constructor.
|
Constructor and Description |
---|
PopularityRecommender(FastPreferenceData<U,I> data)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
static <U,I> Function<U,IntPredicate> |
FastFilters.notInTrain(FastPreferenceData<U,I> trainData)
Item filter that discards items in the training preference data.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCODECPreferenceData<U,I,Cu,Ci>
Abstract PreferenceData using compression.
|
class |
BinaryCODECPreferenceData<U,I,Cu,Ci>
PreferenceData for binary data using compression.
|
class |
RatingCODECPreferenceData<U,I,Cu,Ci,Cv>
PreferenceData for rating data using compression.
|
Constructor and Description |
---|
BinaryCODECPreferenceData(FastPreferenceData<U,I> preferences,
FastUserIndex<U> users,
FastItemIndex<I> items,
CODEC<Cu> u_codec,
CODEC<Ci> i_codec)
Constructor that utilizes other PreferenceData object with default IdxPref to IdPref
converters.
|
BinaryCODECPreferenceData(FastPreferenceData<U,I> preferences,
FastUserIndex<U> users,
FastItemIndex<I> items,
CODEC<Cu> u_codec,
CODEC<Ci> i_codec,
Function<IdxPref,IdPref<I>> uPrefFun,
Function<IdxPref,IdPref<U>> iPrefFun)
Constructor that utilizes other PreferenceData object with custom IdxPref to IdPref converters.
|
RatingCODECPreferenceData(FastPreferenceData<U,I> preferences,
FastUserIndex<U> users,
FastItemIndex<I> items,
CODEC<Cu> u_codec,
CODEC<Ci> i_codec,
CODEC<Cv> r_codec)
Constructor that utilizes other PreferenceData object with default IdxPref to IdPref
converters.
|
RatingCODECPreferenceData(FastPreferenceData<U,I> preferences,
FastUserIndex<U> users,
FastItemIndex<I> items,
CODEC<Cu> u_codec,
CODEC<Ci> i_codec,
CODEC<Cv> r_codec,
Function<IdxPref,IdPref<I>> uPrefFun,
Function<IdxPref,IdPref<U>> iPrefFun)
Constructor that utilizes other PreferenceData object with custom IdxPref to IdPref
converters.
|
Modifier and Type | Interface and Description |
---|---|
interface |
FastPointWisePreferenceData<U,I>
Fast point-wise preference data.
|
Modifier and Type | Class and Description |
---|---|
class |
IteratorsAbstractFastPreferenceData<U,I>
Extends AbstractFastPreferenceData and implements the data access stream-based methods using the iterator-based ones.
|
class |
StreamsAbstractFastPreferenceData<U,I>
Extends AbstractFastPreferenceData and implements the data access iterator-based methods
using the stream-based ones.
|
Constructor and Description |
---|
BPRPreferenceFMData(FastPreferenceData<?,?> prefs)
Constructor.
|
BPRPreferenceFMData(FastPreferenceData<?,?> prefs,
Random rnd)
Constructor.
|
OneClassPreferenceFMData(FastPreferenceData<?,?> prefs,
double negativeProp)
Constructor.
|
OneClassPreferenceFMData(FastPreferenceData<?,?> prefs,
double negativeProp,
Random rnd)
Constructor.
|
Modifier and Type | Method and Description |
---|---|
void |
CompressibleBinaryPreferencesFormat.write(FastPreferenceData<?,?> prefData,
OutputStream uo,
OutputStream io)
Saves a PreferenceData instance in two files for user and item preferences, respectively.
|
void |
CompressibleRatingPreferencesFormat.write(FastPreferenceData<?,?> prefData,
OutputStream uo,
OutputStream io)
Saves a PreferenceData instance in two files for user and item preferences, respectively.
|
void |
CompressibleBinaryPreferencesFormat.write(FastPreferenceData<?,?> prefData,
String up,
String ip)
Saves a PreferenceData instance in two files for user and item preferences, respectively.
|
void |
CompressibleRatingPreferencesFormat.write(FastPreferenceData<?,?> prefData,
String up,
String ip)
Saves a PreferenceData instance in two files for user and item preferences, respectively.
|
Modifier and Type | Method and Description |
---|---|
static <U,I> cc.mallet.topics.ParallelTopicModel |
LDAModelEstimator.estimate(FastPreferenceData<U,I> preferences,
int k,
double alpha,
double beta,
int numIterations,
int burninPeriod)
Estimate a topic model for collaborative filtering data.
|
Copyright © 2016. All rights reserved.